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Abstract

We present a Bayesian factorization model for discovering dynamic communities
of actors in a social network and for describing action types associated with those
communities. The structure of a social network is often hidden in the interactions
among its actors. Typically, we observe interactions between pairs of actors (i.e.,
an edge) and our goal is to uncover their more complex relationships. For ex-
ample, here we consider a problem in international relations where our goal is to
analyze pairwise country interactions to infer communities of countries that are
organized into international “events.” We develop a Poisson factorization model
for decomposing tensors of time-stamped and typed interactions; and we present
a mean-field variational method for efficiently fitting this model to large amounts
of data. We study the inferred components from a real-world data set of country–
country interactions, and show that they conform to and inform our knowledge of
international affairs.

1 Introduction

In this paper, we present a Bayesian tensor factorization model that discovers interpretable latent
structure in social networks from dyadic interaction data. Social networks can be viewed either
statically or dynamically. When viewed statically, a social network is characterized by a set of actors
connected by edges that represent persistent relationships such as “friendship” on Facebook and co-
authorship in academia. In contrast, when viewed dynamically, a social network is characterized by
a set of interactions between actors. Network properties, such as the relationships between those
actors, are then determined implicitly via patterns of interaction. For example, an email network
can be viewed as a set of interactions (i.e., emails) in which patterns in the timing and content of
emails imply information about the relationships between actors.

Social interaction data is often limited to (or simply modeled as) dyadic interactions, i.e., interac-
tions between only two actors, a sender and a receiver. This assumption is motivated by the sparsity
and computational challenges arising from the combinatorial explosion induced by considering in-
teractions between groups of actors. In practice, however, social scientists are often interested in
modeling social processes in which dyadic behavior is highly coupled. The modeling challenge in
these scenarios is therefore to answer complex questions about the underlying social processes given
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only pairwise interaction data. Blockmodeling, in which static blocks (or communities) of actors are
inferred based on correlated dyadic behavior, is a common instance of this approach.

The motivation behind this paper is international relations, in which 1) there are substantially dif-
ferent types of interaction between country actors (e.g., praise vs. invade), 2) the relationships
between countries change through time (sometimes drastically and abruptly), and 3) bilateral1 be-
havior is contingent on multilateral relationships (e.g., treaties). For decades, political scientists
have collected records of bilateral interactions between country actors of the form, “Country A
did something to Country B.” Given such data, the modeling challenge is to infer and characterize
the complex multilateral relationships that give rise to the observed bilateral interaction patterns.
Equivalently, in terms more common to the social networks research community, the goal is to infer
dynamic and typed communities—polyadic events—from patterns in the timing and types of dyadic
interactions.

Poisson-based models have been used in international relations since the 1940s [1]. Poisson regres-
sion models (e.g., that of King [2]) are highly effective at exploratory and predictive tasks involving
interaction counts in international relations. In the social networks research community, Poisson ma-
trix factorization has also been used effectively for community detection in networks (e.g., [3, 4]).

In this paper, we introduce Poisson tensor factorization, a generalization of Poisson matrix factor-
ization, and a variational algorithm that permits inference of parameter values from large data sets.
Our model infers K latent components that specify different mixtures over the senders, receivers,
action types, and timing of dyadic interactions. We showcase our model as an exploratory analysis
tool for international relations scholars by demonstrating that the inferred components correspond
to interpretable polyadic events that conform to and inform knowledge of international affairs.

2 Data Representation

Consider a set of observed dyadic interactions X = {x1, . . . xM} where each member is tuple-
valued xm = (sm, rm, am, τm) encoding the source, receiver, action-type, and time-stamp of the
interaction. We assume that senders and receivers come from the same index set of N actors
sm, rm ∈ {1 . . . N}. Action-types similarly come from an index set of A actions an ∈ {1 . . . , A}.
Modeling time discretely with time-steps indexed by t ∈ {1, . . . , T}, we obtain counts yijat =
#{xm : sm = i, rm = j, am = a, τm ⊂ t} which are the number of interactions within a discrete
time interval t involving a particular sender i, receiver j, and action-type a. These counts form the
entries of a four-mode tensor Y ∈ NN×N×A×T that is non-negative and integer-valued.

3 Poisson Tensor Factorization

Poisson tensor factorization (PTF) generalizes Poisson matrix factorization (PMF) which is a spe-
cific case of non-negative matrix factorization (NNMF). In NNMF, an observed non-negative matrix
Y ∈ RD×V is assumed to be generated from the product of latent matrices Θ ∈ RD×K

+ and
Φ ∈ RK×V

+ known as the excitation and template matrices or weight and factor matrices, respec-
tively. PMF assumes a Poisson likelihood, so that entries of the observed matrix are counts ynd ∈ N
and are assumed to be generated ynd ∼ Poisson(

∑K
k=1 θdkφkv). In PTF, we observe an M -mode

tensor Y ∈ ND1×···×DM , whereDm is the dimensionality of modem. We assume that the observed
tensor was generated from the multiway product of M latent matrices Θ1, . . . ,ΘM where a given
latent matrix Θm ∈ RDm×K

+ is the dimensionality of mode m by the number of latent components.
For the purposes of exposition, we will assume from here on that Y is a four-mode tensor, as is the
case in our particular application, but note the generality of the model and inference algorithm for
arbitrary sized tensors. We then assume a Poisson likelihood such that a given count in the observed
tensor yijat ∈ Y is drawn yijat ∼ Poisson(θ1ikθ

2
jkθ

3
akθ

4
tk).

To complete the model, we impose prior distributions over the entries of the latent matrices. In
PMF, it is typical to impose a Gamma prior over the entries of the excitation matrix so that

1The term bilateral is standard in the international relations literature while the term dyadic is standard
in the social networks literature. For the purpose of this paper, we consider the terms bilateral, dyadic, and
pairwise to be interchangeable and similarly for multilateral and polyadic.
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θdk ∼ Gamma(a, b)2. Cemgil et al. [5] introduced to the machine learning community PMF with
Gamma priors over both the entries of the excitation and template matrices and derived both MCMC
and variational inference algorithms for the model. We follow Cemgil and others ([6], [7]) in im-
posing Gamma priors over the entries of all M latent matrices. For our case, in which Y is a
four-mode tensor containing the counts of typed dyadic interactions within discrete time intervals,
the corresponding PTF model can be described as:

θsik ∼ Gamma(a, b)

θrjk ∼ Gamma(a, b)

ψak ∼ Gamma(c, d)

δtk ∼ Gamma(e, f)

yijat ∼ Poisson

(
K∑

k=1

θsikθ
r
jkψakδtk

)
(1)

We use Θs = {θsik},Θr = {θrjk},Ψ = {ψak},∆ = {δtk} to refer to the four latent matrices (one
per mode of Y) where the four modes correspond to the space of possible senders, receivers, action-
types, and time-steps of a dyadic interaction, respectively. We assume that senders and receivers
come from the same set of actors. Thus for a set of N actors, Θs,Θr ∈ RN×K

+ . Similarly, for a
set of A possible action-types, Ψ ∈ RA×K

+ and for T time-steps, ∆ ∈ RT×K
+ . In matrix factoriza-

tion, the K-length rows of the excitation matrix are interpreted as per-item weights on the K latent
components while the D-length columns of the template matrix are interpreted as per-component
templates (or ‘topics’) of the covariate space (e.g., the space of unique word types). In the case of
PTF, it will be interesting to consider both rows and columns of these latent matrices with no latent
matrix having a particular interpretation beyond embedding a mode into latent space. For example,
a row ~θi of Θs versus a column ~θk may be interesting when asking “which component is sender i
most active in?” versus “which sender is most active in component k?”.

By the Superposition Theorem [8], the Poisson likelihood in equation 1 can be equivalently rep-
resented as the sum of K independent Poisson random variables yijat =

∑K
k=1 zijatk where

zijatk ∼ Poisson
(
θsikθ

r
jkψakδtk

)
. This property is practically important for deriving the variational

inference algorithm but also highlights a unique property of Poisson factorization models in that
discrete observations arise from independent latent sources that are also discrete. It can be shown,
as in Cemgil et al. [5], that the likelihood, as it appears in equation 1, results from marginalizing out
the latent sources, ~zijat ≡ zijat1, . . . , zijatK :

P (yijat | θsik, θrjk, ψak, δtk) =
∑
~zijat

P (yijat, ~zijat | θsik, θrjk, ψak, δtk) (2)

When performing inference in Poisson factorization models, we can choose whether to explicitly
represent the sources as latent variables or marginalize them out. We will see in section 4 that
explicitly representing the sources is useful for deriving mean-field variational inference. The joint
probability of counts and sources can be factorized in the following way (where we use the notation
P (x|−) to mean the probability of x given values of all other variables):

P (yijat, ~zijat|−) = P (~zijat|yijat,−)P (yijat|−) (3)

Here the term P (yijat|−) is the marginal likelihood shown in equation 1 while the term
P (~zijat|yijat,−) ≡ P (zijat1, . . . , zijatK |yijat,−) is the joint probability of independent Poisson
random variables conditioned on their sum, equivalent to a single Multinomial random variable.

4 Variational Inference

At inference time, we “reverse” the generative process to form the posterior distribution of our la-
tent variables given our observations, P (Θs,Θr,Ψ,∆ | Y). Since no closed-form expression exists
for the posterior distribution of this model, we approximate it using mean-field variational infer-
ence. Variational methods optimize the parameters of an instrumental distribution q(Θs,Θr,Ψ,∆)

2We use the rate parameterization of the Gamma distribution throughout.
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to minimize the KL-divergence between it and the true posterior. Mean-field variational methods,
select an instrumental distribution that factorizes over all latent variables. As shown in Cemgil et
al. [5], if we explicitly represent the sources as latent variables so that the instrumental distribution
factorizes over them, closed-form expressions for the variational updates can be easily derived from
known properties about conditionally conjugate models [9]:

q(Z,Θs,Θr,Ψ,∆) =[ N∏
i=1

N∏
j=1

A∏
a=1

T∏
t=1

q(~zijat)

] K∏
k=1

[ N∏
i=1

q(θsik)

][ N∏
j=1

q(θrjk)

][ A∏
a=1

q(ψak)

][ T∏
t=1

q(δtk)

]
(4)

We choose an instrumental distribution that takes the same form over each latent variable as in the
true generative process:

q(~zijat) = Multinomial(yijat, ~φijat)
q(θsik) = Gamma(αs

ik, β
s
ik)

q(θrjk) = Gamma(αr
jk, β

r
jk)

q(ψak) = Gamma(γak, χak)

q(δtk) = Gamma(ρtk, νtk) (5)

The algorithm then works by finding values of the variational parameters which maximize the fol-
lowing tight lower bound on the true log joint probability:

B = Eq[lnP (Y,Θs,Θr,Ψ,∆)] +H(q) (6)

where H(q) is the entropy of the instrumental distribution. It can be shown that maximizing this
lower bound is equivalent to minimizing the KL-divergence from the instrumental distribution to the
true posterior.

We optimize the bound using coordinate ascent. Closed-form update equations for coordinate ascent
with Poisson matrix factorization have been presented previously [5, 7, 6]. The updates for Poisson
tensor factorization follow directly from these:

~φijatk :=
exp(Eq[ln θsikθ

r
jkψakδtk])∑K

k=1 exp(Eq[ln θsikθ
r
jkψakδtk])

αs
ik := a+

N∑
j=1

A∑
a=1

T∑
t=1

Eq[zijatk] βs
ik := b+

N∑
j=1

A∑
a=1

T∑
t=1

Eq[θrjkψakδtk]

αr
jk := a+

N∑
i=1

A∑
a=1

T∑
t=1

Eq[zijatk] βs
jk := b+

N∑
i=1

A∑
a=1

T∑
t=1

Eq[θrikψakδtk]

γak := c+

N∑
i=1

N∑
j=1

T∑
t=1

Eq[zijatk] χak := d+

N∑
i=1

N∑
j=1

T∑
t=1

Eq[θsikθ
r
jkδtk]

ρtk := e+

N∑
i=1

N∑
j=1

A∑
a=1

Eq[zijatk] νtk := f +

N∑
i=1

N∑
j=1

A∑
a=1

Eq[θsikθ
r
ikψak] (7)

Since all the latent variables are independent under the instrumental distribution, the expectations of
products factorize into products of expectations, e.g.:

Eq[θsikθ
r
ikψak] = Eq[θsik]Eq[θrik]Eq[ψak] (8)

Similarly:

Eq[ln θsikθ
r
jkψakδtk] = Eq[ln θsik] +Eq[ln θrjk] +Eq[lnψak] +Eq[ln δtk] (9)
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Therefore, the expectations Eq[θsik] and Eq[ln θsik] for each Gamma variable as well as Eq[zijatk]
are the only sufficient statistics needed to implement the algorithm. We provide the form of the
Gamma expectations for θsik only and note that the other Gamma variables are directly analogous:

Eq[θsik] =
αs
ik

βs
ik

Eq[ln θsik] = ψ(αs
ik)− lnβs

ik (10)

where ψ(·) is the digamma function. Finally, the Multinomial expectation needed is:

Eq[zijatk] = yijatφijatk (11)

This identity is exploited in practice so that we never need to instantiate what would be a pro-
hibitively large tensor containing all of the φijatk variables.

5 Results & Discussion

5.1 Global Database of Events, Location and Tone

For several decades, political scientists (e.g., Schrodt [10]) have collected and analyzed public
records of dyadic interactions3 between countries of the form “Country A did something to Country
B” in order to study patterns of international relations. In recent years, information extraction sys-
tems (e.g., TABARI [11]) have been developed to automatically extract large collections of records
from digital news archives. The size and scope of these new datasets present both an unprecedented
opportunity to understand the complex structure of international affairs as well as a challenge to
develop scalable models.

Our data of country interactions comes from the Global Database of Events, Location, and Tone
(GDELT) [12]. GDELT is unparalleled in its scope and size, containing over a quarter billion in-
teractions dating back to 1979. Interactions are coded for a number of attributes including detailed
information about senders, receivers, and action-types. GDELT employs the CAMEO hierarchical
coding scheme [13] for both actors and action-types. For actors, the top level represents their coun-
try of origin while lower levels represent successively finer distinctions (e.g., sector, government
branch). For action-type, the top level consists of 20 basic classes that are loosely ranked based on
sentiment ranging from 01 Make Public Statement to 20 Use Unconventional Mass Violence.

In all of our experiments, we considered the top level for both actors and action-types as index sets,
leading to N = 219 unique country actors and A = 20 unique high-level action-types. Interactions
in GDELT are time-stamped with per-day granularity. We experimented with 1-day, 3-day, and 7-
day intervals as time-steps for a single year window (T = 365, T = 121, and T = 52, respectively).
Our observed tensor, with e.g., 7-day time-steps, was therefore Y ∈ N219×219×20×52.

5.2 Exploratory results

We provide example output of the model in Figure 5.2 where we display two of the latent compo-
nents inferred for a dataset of interactions occurring in 2012. A component k is an index into the
column space of the four latent matrices associating a vector of factors over senders ~θsk, receivers
~θrk, action-types ~ψk, and time-steps ~δk. For a given component, we display all of its time-step fac-
tors chronologically, while for sender, receiver, and action-type factors we display the top ten (by
magnitude) in decreasing order. In examining a component, we asked whether the association of
its top senders, receivers, action-types, and time-steps corresponded to a major polyadic event that
would have received significant media coverage. In many cases, the component’s correspondence to
a major polyadic event was clear given our background knowledge. For example, the first subplot
of Figure 5.2 shows a component in which the top action-type is Fight, the top actors are Israel,
Palestine, and other countries directly involved in that ongoing conflict (e.g., Egypt, United States)
and the time factors show a sharp spike in November 2012, during which time Operation Pillar

3These interactions are referred to as events in the political science community with the datasets referred
to as political events data. We will refer to them as interactions to distinguish the discrete dyadic observations
from the latent persistent events we are trying to extract.
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of Defense [14] occurred. In the cases where our background knowledge was insufficient to map
a component to a polyadic event, a simple Google query containing the top sender, receiver and
time step (e.g., “israel palestine november 2012”) almost always returned a sensible answer. The
second subplot of Figure 5.2 shows an example of such a component where we Googled “ecuador
UK august 2012” to see if any major event spiking around August 2012 could explain the compo-
nent’s top actors being Ecuador, United Kingdom, United States, Sweden, and Australia. The top
hit from this query was a Wikipedia article [15] about Julian Assange, a journalist from Australia,
wanted by the United States for his role in the Wikileaks scandal and by Sweden for alleged sexual
misconduct. Assange sought refuge in June 2012 at Equador’s embassy in the United Kingdom
and was granted political asylum in August 2012. We see that the component’s time factors (with
spikes in June and August), its actor factors, and action-type factors provide an excellent summary
for this complex ordeal. We consider this a perfect example of the type of structure we sought orig-
inally to discover: a time-dependent complex relationship between multiple different countries (a
polyadic event). That some components conformed to our prior knowledge while others prompted
us to “converse” with the data, gives us confidence in the model as an exploratory tool.

Figure 1: Two of the components inferred for 2012 data with 7-day time-intervals and K = 50.
Left: Israeli-Palestinian hostilities renew in November 2012 during Operation Pillar of Defense.
Right: Julian Assange is sheltered at Ecuador’s embassy in United Kingdom, June-August.
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5.3 Sparsity & choice of K

As with all parametric models, the choice of K matters. We expect that the proportion of obser-
vations explained by a particular latent component is inversely proportional to the number of latent
components: the more components, the more each component specializes on a particular subset of
observations. If we are using the model for prediction, we should choose the K which maximizes
the model’s ability to generalize to new observations (e.g., minimizes test set error). If we are using
the model as an exploratory tool, we seek an intuitive understanding for how choices of K affect the
results, treating K as a knob to be controlled by a human analyst.

We observed that as we increased K, the components we inferred went from corresponding to more
general polyadic events that unfolded over longer periods of time, to more specific ones exhibit-
ing sparse time factors around specific peaks. We give an example of this in Figure 5.3 in which
we show a component from a run on 2012 data with K = 50 and a component from a run with
K = 100. The two components clearly explain overlapping subsets of the data: interactions in-
volving Syria and regional neighbors that peak around August 2012. The time factors in the first
component (K = 50) show a gradual buildup to the August peak followed by an equally gradual
decline in activity. This contrasts with the second component (K = 100) whose time factors are
sparse around the August peak. After some Googling, we find that the first component corresponds

6



generally to the Syrian civil war which began in late 2011, entered a tenuous cease-fire in April 2012
and renewed in July 2012 with major battles over Damascus and Aleppo in August 2012 [16]. We
see that the top two actors in the first component, other than Syria, are its Eastern neighbors, Turkey
and Lebanon, who we expect to be the two countries most generally affected by the war (fighting
was concentrated in Aleppo which borders Turkey and Damascus which borders Lebanon). We see
in the second component, whose time factors are highly peaked around early August, that the top
two actors, other than Syria, are Iran and Turkey, with Lebanon lower on the ranking. We find,
again after Googling, that a major defection of Syrian military leaders into Turkey on August 7th
coincided with the capture of Iranian agents by the Syrian rebels and the revelation that Iran was pro-
viding material support to the Syrian regime [17]. We conclude that although the general Syria civil
war component from the K = 50 run accounts in part for the August interactions between Syria,
Turkey and Iran, the component in the K = 100 run specializes in those particular interactions.

Figure 2: Corresponding components from separate runs on 2012 data with different settings for K.
Left: K = 50. Time factors show a gradual buildup up to the peak of the Syrian civil war in 2012.
Right: K = 100. Time factors are sparse around two specific peaks.
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Figure 3: K = 100. A different component cor-
responding to the Syrian civil war.
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Upon further inspection, we also find that a dif-
ferent component from the run with K = 100,
shown in Figure 5.3, accounts for the gradual
buildup of interactions between Syria and its
Eastern neighbors. We see that the general Syr-
ian civil war component inferred in the K = 50
run appears to be a mixture of the two more spe-
cialized components inferred in the K = 100
run. We see that its top actors and top action-
types, are a mixture of the top actors and action-
types in the two K = 100 components, and its
time factors are a mixture of the August spike in
the first K = 100 component and the gradual
buildup in the second. Intuitively, it makes sense
that with twice as many latent components, the
model infers components that are twice as spe-
cialized.

It is a well-known property of the Gamma distri-
bution that its asymmetry and spike at zero make
it a very suitable prior for sparse variables. Fol-
lowing Gopalan et al. [6], we imposed Gamma priors that encouraged the model towards sparse
factors. We found that the sparse representation makes the components highly interpretable and that
the direct relationship between the number of latent components and the sparsity of their factors
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allow an analyst to intuitively configure the hyperparameters for exploratory tasks, with larger K
leading to more specific and temporally-localized polyadic events.

We have made public4 sample results from experiments on 2003-2012 data that include all of the
components inferred from the 2012 runs discussed here.

6 Related and Future Work

This work is closely related to Schein et al. [18] who present a Poisson-based generative model
for clustering time-series of dyadic interactions in GDELT for the task of discovering multilateral
relations. Though the task is similar, the model presented there is different in several important
respects including that it is a clustering (as opposed to admixture) model and it does not model
the action-type of interactions. Dubois & Smyth [19] modeled senders, receivers and action-types
of dyadic interactions using a generative model. Their model conditions on the number of total
interactions and imposes Dirichlet priors over the factors in each component. Hoff [20] has also
recently presented general work on Tucker tensor decompositions that includes an example analysis
on GDELT data.

Our preliminary findings suggest several promising next steps. First, a hierarchical model over
sender and receiver factors would allow the model to share statistical strength between the subsets
of interactions in which an actor is a sender or receiver. This makes intuitive sense, as we ex-
pect the activity of an actor as a sender and receiver to be highly correlated. Hierarchical priors
of this kind have been employed effectively in Poisson matrix factorization for recommendation
(e.g., Gopalan et al. [6]). Second, there are several non-parametric extensions of the current model
that are worth investigating particularly in light of recent work on the Negative-Binomial Process
(e.g., Zhou & Carin [21], Broderick et al. [22]). It has been shown (as in Zhou et al. [23]) that
the Negative-Binomial Process is equivalent to Poisson matrix factorization with a Gamma process
prior imposed over the excitations. Lastly, the current model assumes column exchangeability for
time-steps which, although practical, violates common sense. Typically, the way to induce column
dependency is with a Gaussian prior. Paisley et al. [24] use a logistic normal prior to induce depen-
dencies between weights drawn from a Gamma process. Adams et al. [25] also derived inference
for a Poisson process model with Gaussian process intensities. Another way to induce column de-
pendence is to impose a Hidden Markov Model over the intensities (as in Schein et al. [18]), though
doing so makes inference more challenging.

7 Summary

In this paper, we presented Poisson tensor factorization which discovers interpretable polyadic
events from dyadic interaction data. Recent work in political science has yielded large datasets
of country-country interactions that motivate the development of scalable models for learning pat-
terns of country interaction. Our mean-field variational algorithm allows for efficient inference on
such scales. We showcased the model as an exploratory analysis tool for international relations
researchers by fitting it to GDELT data and showing that its latent components corresponded to in-
terpretable polyadic events. We further demonstrated how the model’s sparse representation makes
it easy to use and interpret. Finally, we outlined promising future directions for this line of research
including modeling temporal dependence and Bayesian non-parametric extensions.
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