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Abstract
We introduce Bayesian Poisson Tucker de-
composition (BPTD) for modeling country–
country interaction event data. These data con-
sist of interaction events of the form “coun-
try i took action a toward country j at time
t.” BPTD discovers overlapping country–
community memberships, including the number
of latent communities. In addition, it discovers
directed community–community interaction net-
works that are specific to “topics” of action types
and temporal “regimes.” We show that BPTD
yields an efficient MCMC inference algorithm
and achieves better predictive performance than
related models. We also demonstrate that it dis-
covers interpretable latent structure that agrees
with our knowledge of international relations.

1. Introduction
Like their inhabitants, countries interact with one another:
they consult, negotiate, trade, threaten, and fight. These
interactions are seldom uncoordinated. Rather, they are
connected by a fabric of overlapping communities, such as
security coalitions, treaties, trade cartels, and military al-
liances. For example, OPEC coordinates the petroleum ex-
port policies of its thirteen member countries, LAIA fosters
trade among Latin American countries, and NATO guaran-
tees collective defense against attacks by external parties.
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A single country can belong to multiple communities, re-
flecting its different identities. For example, Venezuela—
an oil-producing country and a Latin American country—is
a member of both OPEC and LAIA. When Venezuela inter-
acts with other countries, it sometimes does so as an OPEC
member and sometimes does so as a LAIA member.

Countries engage in both within-community and between-
community interactions. For example, when acting as
an OPEC member, Venezuela consults with other OPEC
countries, but trades with non-OPEC, oil-importing coun-
tries. Moreover, although Venezuela engages in between-
community interactions when trading as an OPEC member,
it engages in within-community interactions when trading
as a LAIA member. To understand or predict how countries
interact, we must account for their community member-
ships and how those memberships influence their actions.

In this paper, we take a new approach to learning over-
lapping communities from interaction events of the form
“country i took action a toward country j at time t.” A data
set of such interaction events can be represented as either
1) a set of event tokens, 2) a tensor of event type counts, or
3) a series of weighted multinetworks. Models that use the
token representation naturally yield efficient inference al-
gorithms, models that use the tensor representation exhibit
good predictive performance, and models that use the net-
work representation learn latent structure that aligns with
well-known concepts such as communities. Previous mod-
els of interaction event data have each used a subset of these
representations. Our approach—Bayesian Poisson Tucker
decomposition (BPTD)—takes advantage of all three.
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Figure 1. Latent structure learned by BPTD from country–
country interaction events between 1995 and 2000. Top right:
A community–community interaction network specific to a single
topic of action types and temporal regime. The topic places most
of its mass on the Intend to Cooperate and Consult actions, so
this network represents cooperative community–community in-
teractions. The two strongest between-community interactions
(circled) are 2�!5 and 2�!7. Left: Each row depicts the over-
lapping community memberships for a single country. We show
only those countries whose strongest community membership is
to either community 2, 5, or 7. We ordered the countries ac-
cordingly. Countries strongly associated with community 7 are
at highlighted in red; countries associated with community 5 are
highlighted in green; and countries associated with community
2 are highlighted in purple. Bottom right: Each country is col-
ored according to its strongest community membership. The la-
tent communities have a very strong geographic interpretation.

BPTD builds on the classic Tucker decomposition (Tucker,
1964) to factorize a tensor of event type counts into three
factor matrices and a four-dimensional core tensor (sec-
tion 2). The factor matrices embed countries into com-
munities, action types into “topics,” and time steps into
“regimes.” The core tensor interacts communities, top-
ics, and regimes. The country–community factors en-
able BPTD to learn overlapping community member-
ships, while the core tensor enables it to learn directed
community–community interaction networks specific to
topics of action types and temporal regimes. Figure 1 il-
lustrates this structure. BPTD leads to an efficient MCMC
inference algorithm (section 4) and achieves better predic-
tive performance than related models (section 6). Finally,
BPTD discovers interpretable latent structure that agrees
with our knowledge of international relations (section 7).

2. Bayesian Poisson Tucker Decomposition
We can represent a data set of interaction events as a set
of N event tokens, where a single token en = (i

a�!j, t)
indicates that sender country i 2 [V ] took action a 2 [A]
toward receiver country j 2 [V ] during time step t 2 [T ].
Alternatively, we can aggregate these event tokens into a
four-dimensional tensor Y , where element y(t)

i
a�!j

is a count

of the number of events of type (i
a�!j, t). This tensor will

be sparse because most event types never actually occur
in practice. Finally, we can equivalently view this count
tensor as a series of T weighted multinetwork snapshots,
where the weight on edge i

a�!j in the tth snapshot is y(t)
i

a�!j
.

BPTD models each element of count tensor Y as

y
(t)

i
a�!j

⇠ Po

 
CX

c=1

✓ic

CX

d=1

✓jd

KX

k=1

�ak
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 tr �
(r)

c
k�!d

!
, (1)

where ✓ic, ✓jd, �ak,  tr, and �(r)
c

k�!d
are positive real num-

bers. Factors ✓ic and ✓jd capture the rates at which coun-
tries i and j participate in communities c and d, respec-
tively; factor �ak captures the strength of association be-
tween action a and topic k; and  tr captures how well
regime r explains the events in time step t. We can col-
lectively view the V ⇥ C country–community factors as a
latent factor matrix⇥, where the ith row represents country
i’s community memberships. Similarly, we can view the
A⇥K action–topic factors and the T⇥R time-step–regime
factors as latent factor matrices � and , respectively. Fac-
tor �(r)

c
k�!d

captures the rate at which community c takes ac-
tions associated with topic k toward community d during
regime r. The C ⇥ C ⇥ K ⇥ R such factors form a core
tensor ⇤ that interacts communities, topics, and regimes.

The country–community factors are gamma-distributed,

✓ic ⇠ �(↵i,�i) , (2)

where the shape and rate parameters ↵i and �i are specific
to country i. We place an uninformative gamma prior over
these shape and rate parameters: ↵i,�i ⇠ �(✏0, ✏0). This
hierarchical prior enables BPTD to express heterogeneity
in the countries’ rates of activity. For example, we expect
that the US will engage in more interactions than Burundi.

The action–topic and time-step–regime factors are also
gamma-distributed; however, we assume that these factors
are drawn directly from an uninformative gamma prior,

�ak, tr ⇠ �(✏0, ✏0) . (3)

Because BPTD learns a single embedding of countries into
communities, it preserves the traditional network-based
notion of community membership. Any sender–receiver
asymmetry is captured by the core tensor ⇤, which we can
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view as a compression of count tensor Y . By allowing
on-diagonal elements, which we denote by �(r)

c �k and off-
diagonal elements to be non-zero, the core tensor can rep-
resent both within- and between-community interactions.

The elements of the core tensor are gamma-distributed,

�
(r)
c �k ⇠ �

�
⌘ �
c ⌘
$
c ⌫k⇢r, �

�
(4)

�
(r)

c
k�!d

⇠ �(⌘$c ⌘$d ⌫k⇢r, �) c 6= d. (5)

Each community c 2 [C] has two positive weights ⌘ �

c

and ⌘$c that capture its rates of within- and between-
community interaction, respectively. Each topic k 2 [K]
has a positive weight ⌫k, while each regime r 2 [R] has a
positive weight ⇢r. We place an uninformative prior over
the within-community interaction rates and gamma shrink-
age priors over the other weights: ⌘ �

c ⇠ �(✏0, ✏0), ⌘$c ⇠
�(�0 /C, ⇣), ⌫k ⇠ �(�0 /K, ⇣), and ⇢r ⇠ �(�0 /R, ⇣).
These priors bias BPTD toward learning latent structure
that is sparse. Finally, we assume that � and ⇣ are drawn
from an uninformative gamma prior: �, ⇣ ⇠ �(✏0, ✏0).

As K ! 1, the topic weights and their corresponding
action–topic factors constitute a draw GK =

P1
k=1 ⌫k 1�k

from a gamma process (Ferguson, 1973). Similarly, as
R ! 1, the regime weights and their correspond-
ing time-step–regime factors constitute a draw GR =P1

r=1 ⇢r 1 r
from another gamma process. As C ! 1,

the within- and between-community interaction weights
and their corresponding country–community factors con-
stitute a draw GC =

P1
c=1 ⌘

$
c 1✓c from a marked gamma

process (Kingman, 1972). The mark associated with atom
✓c = (✓1c, . . . , ✓Vc) is ⌘ �

c . We can view the elements of
the core tensor and their corresponding factors as a draw
G =

P1
c=1

P1
d=1

P1
k=1

P1
r=1 �

(r)

c
k�!d

1✓c,✓d,�k, r
from a

gamma process, provided that the expected sum of the core
tensor elements is finite. This multirelational gamma pro-
cess extends the relational gamma process of Zhou (2015).

Proposition 1: In the limit as C,K,R ! 1, the expected
sum of the core tensor elements is finite and equal to

E
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�
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�30
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+
�40
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◆
.

We prove this proposition in the supplementary material.

3. Connections to Previous Work
Poisson CP decomposition: DuBois & Smyth (2010) de-
veloped a model that assigns each event token (ignoring
time steps) to one of Q latent classes, where each class q 2
[Q] is characterized by three categorical distributions—✓!q

over senders, ✓ q over receivers, and �q over actions—i.e.,

P (en=(i
a�!j, t) | zn=q) = ✓!iq ✓

 
jq �aq. (6)

This model is closely related to the Poisson-based model
of Schein et al. (2015), which explicitly uses the canoni-
cal polyadic (CP) tensor decomposition (Harshman, 1970)
to factorize count tensor Y into four latent factor matrices.
These factor matrices jointly embed senders, receivers, ac-
tion types, and time steps into a Q-dimensional space,

y
(t)

i
a�!j

⇠ Po

 
QX

q=1

✓!iq ✓
 
jq �aq  tq

!
, (7)

where ✓!iq , ✓ jq , �aq , and  tq are positive real numbers.

Schein et al.’s model generalizes Bayesian Poisson matrix
factorization (Cemgil, 2009; Gopalan et al., 2014; 2015;
Zhou & Carin, 2015) and non-Bayesian Poisson CP de-
composition (Chi & Kolda, 2012; Welling & Weber, 2001).

Although Schein et al.’s model is expressed in terms of
a tensor of event type counts, the relationship between
the multinomial and Poisson distributions (Kingman, 1972)
means that we can also express it in terms of a set of event
tokens. This yields an equation that is similar to equation 6,

P (en=(i
a�!j, t) | zn=q) / ✓!iq ✓

 
jq �aq  tq. (8)

Conversely, DuBois & Smyth’s model can be expressed
as a CP tensor decomposition. This equivalence is anal-
ogous to the relationship between Poisson matrix factor-
ization and latent Dirichlet allocation (Blei et al., 2003).

We can make Schein et al.’s model nonparametric by
adding a per-class positive weight �q ⇠ �(�0

Q , ⇣), i.e.,

y
(t)

i
a�!j

⇠ Po

 
QX

q=1

✓!iq ✓
 
jq �aq  tq �q

!
. (9)

As Q ! 1 the per-class weights and their corresponding
latent factors constitute a draw from a gamma process.

Adding this per-class weight reveals that CP decomposi-
tion is a special case of Tucker decomposition where the
cardinalities of the latent dimensions are equal and the off-
diagonal elements of the core tensor are zero. DuBois &
Smyth’s and Schein et al.’s models are therefore highly
constrained special cases of BPTD that cannot capture
dimension-specific structure, such as communities of coun-
tries or topics of action types. These models require each
latent class to jointly summarize information about senders,
receivers, action types, and time steps. This requirement
conflates communities of countries and topics of action
types, thus forcing each class to capture potentially redun-
dant information. Moreover, by definition, CP decompo-
sition models cannot express between-community interac-
tions and cannot express sender–receiver asymmetry with-
out learning completely separate latent factor matrices for
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senders and receivers. These limitations make it hard to in-
terpret these models as learning community memberships.

Infinite relational models: The infinite relational model
(IRM) of Kemp et al. (2006) also learns latent structure
specific to each dimension of an M -dimensional tensor;
however, unlike BPTD, the elements of this tensor are bi-
nary, indicating the presence or absence of the correspond-
ing event type. The IRM therefore uses a Bernoulli like-
lihood. Schmidt & Mørup (2013) extended the IRM to
model a tensor of event counts by replacing the Bernoulli
likelihood with a Poisson likelihood (and gamma priors):

y
(t)

i
a�!j

⇠ Po
✓
�
(zt)

zi
za�!zj

◆
, (10)

where zi, zj 2 [C] are the respective community assign-
ments of countries i and j, za 2 [K] is the topic as-
signment of action a, and zt 2 [R] is the regime assign-
ment of time step t. This model, which we refer to as the
gamma–Poisson IRM (GPIRM), allocates M -dimensional
event types to M -dimensional latent classes—e.g., it allo-
cates all tokens of type (i

a�!j, t) to class (zi
za�!zj , zt).

The GPIRM is a special case of BPTD where the rows of
the latent factor matrices are constrained to be “one-hot”
binary vectors—i.e., ✓ic = 1(zi = c), ✓jd = 1(zj = d),
�ak=1(za=k), and  tr=1(zt=r). With this constraint,
the Poisson rates in equations 1 and 10 are equal. Unlike
BPTD, the GPIRM is a single-membership model. In ad-
dition, it cannot express heterogeneity in rates of activity
of the countries, action types, and time steps. The latter
limitation can be remedied by letting ✓izi , ✓jzj , �aza , and
 tzt be positive real numbers. We refer to this variant of
the GPIRM as the degree-corrected GPIRM (DCGPIRM).

Stochastic block models: The IRM itself generalizes
the stochastic block model (SBM) of Nowicki & Sni-
jders (2001), which learns latent structure from binary net-
works. Although the SBM was originally specified using a
Bernoulli likelihood, Karrer & Newman (2011) introduced
an alternative specification that uses the Poisson likelihood:

yi�!j ⇠ Po

 
CX

c=1

✓ic

CX

d=1

✓jd �c�!d

!
, (11)

where ✓ic = 1(zi = c), ✓j = 1(zj = d), and �c�!d is a
positive real number. Like the IRM and the GPIRM, the
SBM is a single-membership model and cannot express
heterogeneity in the countries’ rates of activity. Airoldi
et al. (2008) addressed the former limitation by letting
✓ic 2 [0, 1] such that

PC
c=1 ✓ic = 1. Meanwhile, Karrer

& Newman (2011) addressed the latter limitation by allow-
ing both ✓izi and ✓jzj to be positive real numbers, much
like the DCGPIRM. Ball et al. (2011) simultaneously ad-
dressed both limitations by letting ✓ic, ✓jd � 0, but con-
strained �c�!d = �d�!c. Finally, Zhou (2015) extended

Ball et al.’s model to be nonparametric and introduced the
Poisson–Bernoulli distribution to link binary data to the
Poisson likelihood in a principled fashion. In this model,
the elements of the core matrix and their corresponding fac-
tors constitute a draw from a relational gamma process.

Non-Poisson Tucker decomposition: Researchers some-
times refer to the Poisson rate in equation 11 as be-
ing “bilinear” because it can equivalently be written as
✓j ⇤✓>i . Nickel et al. (2012) introduced RESCAL—
a non-probabilistic bilinear model for binary data that
achieves state-of-the-art performance at relation extraction.
Nickel et al. (2015) then introduced several extensions for
extracting relations of different types. Bilinear models,
such as RESCAL and its extensions, are all special cases
(albeit non-probabilistic ones) of Tucker decomposition.

Hoff (2015) recently developed a Gaussian-based Tucker
decomposition model and multilinear tensor regression
model (Hoff, 2014) for analyzing interaction event data.

Finally, there are many other Tucker decomposition meth-
ods (Kolda & Bader, 2009). Although these include non-
parametric (Xu et al., 2012) and nonnegative variants (Kim
& Choi, 20007; Mørup et al., 2008; Cichocki et al., 2009),
BPTD is the first such model to use a Poisson likelihood.

4. Posterior Inference
Given an observed count tensor Y , inference in BPTD in-
volves “inverting” the generative process to obtain the pos-
terior distribution over the parameters conditioned on Y
and hyperparameters ✏0 and �0. The posterior distribution
is analytically intractable; however, we can approximate
it using a set of posterior samples. We draw these sam-
ples using Gibbs sampling, repeatedly resampling the value
of each parameter from its conditional posterior given Y ,
✏0, �0, and the current values of the other parameters. We
express each parameter’s conditional posterior in a closed
form using gamma–Poisson conjugacy and the auxiliary
variable techniques of Zhou & Carin (2012). We provide
the conditional posteriors in the supplementary material.

The conditional posteriors depend on Y via a set of “la-
tent sources” (Cemgil, 2009) or subcounts. Because of the
Poisson additivity theorem (Kingman, 1972), each latent
source y

(tr)

ic
ak�!jd

is a Poisson-distributed random variable:

y
(tr)

ic
ak�!jd

⇠ Po
✓
✓ic ✓jd �ak  tr �

(r)

c
k�!d

◆
(12)

y
(t)

i
a�!j

=
CX

c=1

DX

d=1

KX

k=1

RX

r=1

y
(tr)

ic
ak�!jd

. (13)

Together, equations 12 and 13 are equivalent to equation 1.
In practice, we can equivalently view each latent source in
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terms of the token representation described in section 2,

y
(tr)

ic
ak�!jd

=
NX

n=1

1(en=(i
a�!j, t))1(zn=(c

k�!d, r)), (14)

where each token’s class assignment zn is an auxiliary la-
tent variable. Using this representation, computing the la-
tent sources (given the current values of the model param-
eters) simply involves allocating event tokens to classes,
much like the inference algorithm for DuBois & Smyth’s
model, and aggregating them using equation 14. The con-
ditional posterior for each token’s class assignment is

P (zn=(c
k�!d, r) | en=(i

a�!j, t),Y , ✏0, �0, . . .)

/ ✓ic ✓jd �ak  tr �
(r)

c
k�!d

. (15)

Computation is dominated by the normalizing constant

Z
(t)

i
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=
CX

c=1
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d=1

KX
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RX

r=1

✓ic ✓jd �ak  tr �
(r)

c
k�!d

. (16)

Computing this normalizing constant naı̈vely involves
O(C ⇥ C ⇥ K ⇥ R) operations; however, because each
latent class (c k�!d, r) is composed of four separate dimen-
sions, we can improve efficiency. We instead compute

Z
(t)

i
a�!j

=
CX

c=1

✓ic

CX

d=1

✓jd

KX

k=1

✓ak

RX

r=1

 tr �
(r)

c
k�!d

, (17)

which involves O(C + C +K +R) operations.

Compositional allocation using equations 15 and 17 im-
proves computational efficiency significantly over naı̈ve
non-compositional allocation using equations 15 and 16. In
practice, we set C, K, and R to large values to approximate
the nonparametric interpretation of BPTD. If, for example,
C = 50, K = 10, and R = 5, computing the normalizing
constant for equation 15 using equation 16 requires 2,753
times the number of operations implied by equation 17.

Proposition 2: For an M -dimensional core tensor with
D1 ⇥ . . .⇥DM elements, computing the normalizing con-
stant using non-compositional allocation requires 1  ⇡ <
1 times the number of operations required to compute it
using compositional allocation. When D1= . . .=DM =1,
⇡=1. As Dm, Dm0 ! 1 for any m and m0 6=m, ⇡ ! 1.

We prove this proposition in the supplementary material.

BPTD and other Poisson-based models yield allocation in-
ference algorithms that take advantage of the inherent spar-
sity of the data and scale with the number of event to-
kens. In contrast, non-Poisson tensor decomposition mod-
els (including Hoff’s model) lead to algorithms that scale
with the size of the count tensor. Allocation-based infer-
ence in BPTD is especially efficient because it composi-
tionally allocates each M -dimensional event token to an

V

V

A

K

C

C

Figure 2. Compositional allocation. For clarity, we show the allo-
cation process for a three-dimensional count tensor (ignoring time
steps). Observed three-dimensional event tokens (left) are com-
positionally allocated to three-dimensional latent classes (right).

M -dimensional latent class. Figure 2 illustrates this pro-
cess. CP decomposition models, such as those of DuBois
& Smyth (2010) and Schein et al. (2015), only permit non-
compositional allocation. For example, while BPTD allo-
cates each token en = (i

a�!j, t) to a four-dimensional la-
tent class (c k�!d, r), Schein et al.’s model allocates en to a
one-dimensional latent class q that cannot be decomposed.
Therefore, when Q=C⇥C⇥K⇥R, BPTD yields a faster
allocation inference algorithm than Schein et al.’s model.

5. Country–Country Interaction Event Data
Our data come from the Integrated Crisis Early Warn-
ing System (ICEWS) of Boschee et al. and the Global
Database of Events, Language, and Tone (GDELT) of Lee-
taru & Schrodt (2013). ICEWS and GDELT both use the
Conflict and Mediation Event Observations (CAMEO) hi-
erarchy (Gerner et al.) for senders, receivers, and actions.

The top-level CAMEO coding for senders and receivers
is their country affiliation, while lower levels in the hier-
archy incorporate more specific attributes like their sec-
tors (e.g., government or civilian) and their religious or
ethnic affiliations. When studying international relations
using CAMEO-coded event data, researchers usually con-
sider only the senders’ and receivers’ countries. There are
249 countries represented in ICEWS, which include non-
universally recognized states, such as Occupied Palestinian
Territory, and former states, such as Former Yugoslav Re-
public of Macedonia; there are 233 countries in GDELT.

The top level for actions, which we use in our analyses,
consists of twenty action classes, roughly ranked according
to their overall sentiment. For example, the most negative is
20—Use Unconventional Mass Violence. CAMEO further
divides these actions into the QuadClass scheme: Verbal
Cooperation (actions 2–5), Material Cooperation (actions
6–7), Verbal Conflict (actions 8–16), and Material Conflict
(16–20). The first action (1—Make Statement) is neutral.
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6. Predictive Analysis
Baseline models: We compared BPTD’s predictive perfor-
mance to that of three baseline models, described in sec-
tion 3: 1) GPIRM, 2) DCGPIRM, and 3) the Bayesian
Poisson tensor factorization (BPTF) model of Schein et al.
(2015). All three models use a Poisson likelihood and have
the same two hyperparameters as BPTD—i.e., ✏0 and �0.
We set ✏0 to 0.1, as recommended by Gelman (2006), and
we set �0 so that (�0 /C)2 (�0 /K) (�0 /R) = 0.01. This
parameterization encourages the elements of the core ten-
sor ⇤ to be sparse. We implemented an MCMC inference
algorithm for each model. We provide the full generative
process for all three models in the supplementary material.

GPIRM and DCGPIRM are both Tucker decomposition
models and thus allocate events to four-dimensional la-
tent classes. The cardinalities of these latent dimensions
are the same as BPTD’s—i.e., C, K, and R. In con-
trast, BPTF is a CP decomposition model and thus allo-
cates events to one-dimensional latent classes. We set the
cardinality of this dimension so that the total number of
latent factors in BPTF’s likelihood was equal to the to-
tal number of latent factors in BPTD’s likelihood—i.e.,
Q = d (V⇥C)+(A⇥K)+(T⇥R)+(C2⇥K⇥R)

V+V+A+T+1 e. We chose not
to let BPTF and BPTD use the same number of latent
classes—i.e., to set Q = C2 ⇥ K ⇥ R. BPTF does not
permit non-compositional allocation, so MCMC inference
becomes very slow for even moderate values of C, K, and
R. CP decomposition models also tend to overfit when Q
is large (Zhao et al., 2015). Throughout our predictive ex-
periments, we let C=20, K=6, and R=3. These values
were well-supported by the data, as we explain in section 7.

Experimental setup: We constructed twelve different ob-
served tensors—six from ICEWS and six from GDELT.
Five of the six tensors for each source (ICEWS or GDELT)
correspond to one-year time spans with monthly time steps,
starting with 2004 and ending with 2008; the sixth corre-
sponds to a five-year time span with monthly time steps,
spanning 1995–2000. We divided each tensor Y into a
training tensor Y train = Y (1), . . . ,Y (T�3) and a test ten-
sor Y test = Y (T�2), . . . ,Y (T ). We further divided each
test tensor into a held-out portion and an observed por-
tion via a binary mask. We experimented with two dif-
ferent masks: one that treats the elements involving the
most active fifteen countries as the held-out portion and the
remaining elements as the observed portion, and one that
does the opposite. The first mask enabled us to evaluate
the models’ reconstructions of the densest (and arguably
most interesting) portion of each test tensor, while the sec-
ond mask enabled us to evaluate their reconstructions of
its complement. Across the entire GDELT database, for
example, the elements involving the most active fifteen
countries—i.e., 6% of all 233 countries—account for 30%

of the event tokens. Moreover, 40% of these elements are
non-zero. These non-zero elements are highly dispersed,
with a variance-to-mean ratio of 220. In contrast, only
0.7% of the elements involving the other countries are non-
zero. These elements have a variance-to-mean ratio of 26.

For each combination of the four models, twelve tensors,
and two masks, we ran 5,000 iterations of MCMC inference
on the training tensor. We clamped the country–community
factors, the action–topic factors, and the core tensor and
then inferred the time-step–regime factors for the test ten-
sor using its observed portion by running 1,000 iterations of
MCMC inference. We saved every tenth sample after the
first 500. We used each sample, along with the country–
community factors, the action–topic factors, and the core
tensor, to compute the Poisson rate for each element in the
held-out portion of the test tensor. Finally, we averaged
these rates across samples and used each element’s aver-
age rate to compute its probability. We combined the held-
out elements’ probabilities by taking their geometric mean
or, equivalently, by computing their inverse perplexity. We
chose this combination strategy to ensure that the models
were penalized heavily for making poor predictions on the
non-zero elements and were not rewarded excessively for
making good predictions on the zero elements. By clamp-
ing the country–community factors, the action–topic fac-
tors, and the core tensor after training, our experimental
setup is analogous to that used to assess collaborative fil-
tering models’ strong generalization ability (Marlin, 2004).

Results: Figure 3 illustrates the results for each combi-
nation of the four models, twelve tensors, and two masks.
The top row contains the results from the twelve experi-
ments involving the first mask, where the elements involv-
ing the most active fifteen countries were treated as the
held-out portion. BPTD outperformed the baselines signif-
icantly. BPTF—itself a state-of-the-art model—performed
better than BPTD in only one experiment. In general, the
Tucker decomposition allows BPTD to learn richer latent
structure that generalizes better to held-out data. The bot-
tom row contains the results from the experiments involv-
ing the second mask. The models’ performance was closer
in these experiments, probably because of the large pro-
portion of easy-to-predict zero elements. BPTD and BPTF
performed indistinguishably in these experiments, and both
models outperformed the GPIRM and the DCGPIRM. The
single-membership nature of the GPIRM and the DCG-
PIRM prevents them from expressing high levels of hetero-
geneity in the countries’ rates of activity. When the held-
out elements were highly dispersed, these models some-
times made extremely inaccurate predictions. In contrast,
the mixed-membership nature of BPTD and BPTF allows
them to better express heterogeneous rates of activity.
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Figure 3. Predictive performance. Each plot shows the inverse perplexity (higher is better) for the four models: the GPIRM (blue), the
DCGPIRM (green), BPTF (red), and BPTD (yellow). In the experiments depicted in the top row, we treated the elements involving the
most active countries as the held-out portion; in the experiments depicted in the bottom row, we treated the remaining elements as the
held-out portion. For ease of comparison, we scaled the inverse perplexities to lie between zero and one; we give the scales in the top-left
corners of the plots. BPTD outperformed the baselines significantly when predicting the denser portion of each test tensor (top row).

7. Exploratory Analysis
We used a tensor of ICEWS events spanning 1995–2000,
with monthly time steps, to explore the latent structure dis-
covered by BPTD. We initially let C = 50, K = 8, and
R= 3—i.e., C ⇥ C ⇥ K ⇥ R = 60, 000 latent classes—
and used the shrinkage priors to adaptively learn the most
appropriate numbers of communities, topics, and regimes.
We found C = 20 communities and K = 6 topics with
weights that were significantly greater than zero. We pro-
vide a plot of the community weights in the supplementary
material. Although all three regimes had non-zero weights,
one had a much larger weight than the other two. For
comparison, Schein et al. (2015) used fifty latent classes
to model the same data, while Hoff (2015) used C = 4,
K=4, and R=4 to model a similar tensor from GDELT.

Topics of action types: We show the inferred action–topic
factors as a heatmap in the left subplot of figure 4. We
ordered the topics by their weights ⌫1, . . . , ⌫K , which are
above the heatmap. The inferred topics correspond very
closely to CAMEO’s QuadClass scheme. Moving from left
to right, the topics place their mass on increasingly nega-
tive actions. Topics 1 and 2 place most of their mass on
Verbal Cooperation actions; topic 3 places most of its mass
on Material Cooperation actions and the neutral 1—Make
Statement action; topic 4 places most of its mass on Ver-
bal Conflict actions and the 1—Make Statement action; and
topics 5 and 6 place their mass on Material Conflict actions.

Topic-partitioned community–community networks: In
the right subplot of figure 4, we visualize the inferred com-
munity structure for topic k=1 and the most active regime
r. The bottom-left heatmap is the community–community
interaction network ⇤(r)

k . The top-left heatmap depicts the
rate at which each country i acts as a sender in each com-
munity c—i.e., ✓ic

PV
j=1

PC
d=1 ✓jd �

(r)

c
k�!d

. Similarly, the
bottom-right heatmap depicts the rate at which each coun-
try acts as a receiver in each community. The top-right
heatmap depicts the number of times each country i took

an action associated with topic k toward each country j

during regime r—i.e.,
PC

c=1

PC
d=1

PA
a=1

PT
t=1 y

(tr)

ic
ak�!jd

.

We grouped the countries by their strongest community
memberships and ordered the communities by their within-
community interaction weights ⌘ �

1 , . . . , ⌘ �

C , from smallest
to largest; the thin green lines separate the countries that are
strongly associated with one community from the countries
that are strongly associated with its adjacent communities.

Some communities contain only one or two strongly as-
sociated countries. For example, community 1 contains
only the US, community 6 contains only China, and com-
munity 7 contains only Russia and Belarus. These com-
munities mostly engage in between-community interac-
tion. Other larger communities, such as communities 9
and 15, mostly engage in within-community interaction.
Most communities have a strong geographic interpreta-
tion. Moving upward from the bottom, there are com-
munities that correspond to Eastern Europe, East Africa,
South-Central Africa, Latin America, Australasia, Central
Europe, Central Asia, etc. The community–community in-
teraction network summarizes the patterns in the top-right
heatmap. This topic is dominated by the 4–Consult action,
so the network is symmetric; the more negative topics have
asymmetric community–community interaction networks.
We therefore hypothesize that cooperation is an inherently
reciprocal type of interaction. We provide visualizations
for the other five topics in the supplementary material.

8. Summary
We presented Bayesian Poisson Tucker decomposition
(BPTD) for learning the latent structure of international re-
lations from country–country interaction events of the form
“country i took action a toward country j at time t.” Unlike
previous models, BPTD takes advantage of all three repre-
sentations of an interaction event data set: 1) a set of event
tokens, 2) a tensor of event type counts, and 3) a series of
weighted multinetwork snapshots. BPTD uses a Poisson
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Figure 4. Left: Action–topic factors. The topics are ordered by ⌫1, . . . , ⌫K (above the heatmap). Right: Latent structure discovered by
BPTD for topic k = 1 and the most active regime, including the community–community interaction network (bottom left), the rate at
which each country acts as a sender (top left) and a receiver (bottom right) in each community, and the number of times each country i
took an action associated with topic k toward each country j during regime r (top right). We show only the most active 100 countries.

likelihood, respecting the discrete nature of the data and its
inherent sparsity. Moreover, BPTD yields a compositional
allocation inference algorithm that is more efficient than
non-compositional allocation algorithms. Because BPTD
is a Tucker decomposition model, it shares parameters
across latent classes. In contrast, CP decomposition mod-
els force each latent class to capture potentially redundant
information. BPTD therefore “does more with less.” This
efficiency is reflected in our predictive analysis: BPTD out-
performs BPTF—a CP decomposition model—as well as
two other baselines. BPTD learns interpretable latent struc-
ture that aligns with well-known concepts from the net-
works literature. Specifically, BPTD learns latent country–
community memberships, including the number of com-
munities, as well as directed community–community inter-
action networks that are specific to topics of action types
and temporal regimes. This structure captures the complex-

ity of country–country interactions, while revealing pat-
terns that agree with our knowledge of international rela-
tions. Finally, although we presented BPTD in the context
of interaction events, BPTD is well suited to learning latent
structure from other types of multidimensional count data.

Acknowledgements
We thank Abigail Jacobs and Brandon Stewart for help-
ful discussions. This work was supported by NSF #SBE-
0965436, #IIS-1247664, #IIS-1320219; ONR #N00014-
11-1-0651; DARPA #FA8750-14-2-0009, #N66001-15-C-
4032; Adobe; the John Templeton Foundation; the Sloan
Foundation; the UMass Amherst Center for Intelligent In-
formation Retrieval. Any opinions, findings, conclusions,
or recommendations expressed in this material are the au-
thors’ and do not necessarily reflect those of the sponsors.



Bayesian Poisson Tucker Decomposition for Learning the Structure of International Relations

References
Airoldi, E. M., Blei, D. M., Feinberg, S. E., and Xing, E. P.

Mixed membership stochastic blockmodels. Journal of
Machine Learning Research, 9:1981–2014, 2008.

Ball, B., Karrer, B., and Newman, M. E. J. Efficient
and principled method for detecting communities in net-
works. Physical Review E, 84(3), 2011.

Blei, D., Ng, A., and Jordan, M. Latent Dirichlet allo-
cation. Journal of Machine Learning Research, 3:993–
1022, 2003.

Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S.,
Starz, J., and Ward, M. ICEWS coded event data. Har-
vard Dataverse. V10.

Cemgil, A. T. Bayesian inference for nonnegative matrix
factorisation models. Computational Intelligence and
Neuroscience, 2009.

Chi, E. C. and Kolda, T. G. On tensors, sparsity, and non-
negative factorizations. SIAM Journal on Matrix Analy-
sis and Applications, 33(4):1272–1299, 2012.

Cichocki, A., Zdunek, R., Phan, A. H., and i Amari, S.
Nonnegative Matrix and Tensor Factorizations: Appli-
cations to Exploratory Multi-Way Data Analysis and
Blind Source Separation. John Wiley & Sons, 2009.

DuBois, C. and Smyth, P. Modeling relational events via
latent classes. In Proceedings of the Sixteenth ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 803–812, 2010.

Ferguson, T. S. A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, 1(2):209–230, 1973.

Gelman, A. Prior distributions for variance parameters in
hierarchical models. Bayesian Analysis, 1(3):515–533,
2006.

Gerner, D. J., Schrodt, P. A., Abu-Jabr, R., and Yilmaz, Ö.
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1 Proposition 1

In the limit as C,K,R ! 1, the expected sum of the core tensor elements is finite and equal to
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!#
� E

" 1X

c=1

⌘

$
c ⌘

$
c

#!
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Using E [(
P1

c=1 ⌘
$
c ) (

P1
d=1 ⌘

$
d )] = �2

0
⇣2 + �0

⇣2 , we can write

=
1

�

✓
�0

⇣

◆2
 
�0

⇣

+
�

2
0

⇣

2
+

�0

⇣

2
� E

" 1X

c=1

⌘

$
c ⌘

$
c

#!
.

Finally, using Campbell’s Theorem (Kingman, 1972), we know that E [
P1

c=1 ⌘
$
c ⌘

$
c ] = �0

⇣2 , so

=
1

�

✓
�0

⇣

◆2✓
�0

⇣

+
�

2
0

⇣

2
+

�0

⇣

2
� �0

⇣

2

◆

=
1

�

✓
�0

⇣

◆2✓
�0

⇣

+
�

2
0

⇣

2

◆

=
1

�

✓
�

3
0

⇣

3
+

�

4
0

⇣

4

◆
.

2 Proposition 2

For an M -dimensional core tensor with D1⇥. . .⇥DM elements, computing the normalizing constant using

non-compositional allocation requires 1  ⇡ < 1 times the number of operations required by compositional

allocation. When D1= . . .=DM =1, ⇡=1. As Dm, Dm0 ! 1 for any m and m

0 6=m, ⇡ ! 1.

Each event token occurs in an M -dimensional discrete coordinate space—i.e., en = p, where p =
(p1, . . . , pM ) is a multi-index. Similarly, each event token’s latent class assignment also occurs in
an M -dimensional discrete coordinate space—i.e., zn=q, where q = (q1, . . . , qM ) is a multi-index.

Assuming M factor matrices ⇥(1)
, . . . ,⇥(M) and an M -dimensional core tensor ⇤,

P (zn=q | en=p) / �q

MY

m=1

✓

(m)
pmqm .

The computational bottleneck in MCMC inference is computing the normalizing constant

Zp =
X

q

�q

MY

m=1

✓

(m)
pmqm .

If we use a naı̈ve non-compositional approach, then (assuming each latent dimension m has car-
dinality Dm) the sum over q involves

QM
m=1 Dm terms and each term requires M multiplications.

Thus, computing Zp requires a total of M
QM

m=1 Dm multiplications and
QM

m=1 Dm additions.1

However, we can also compute Zp using a compositional approach—i.e.,

Zp =
D1X

q1=1

✓

(1)
p1q1

D2X

q2=1

✓

(2)
p2q2 . . .

DMX

qM=1

✓

(M)
pMqM �q.

1Computing a sum of N terms requires either N or N � 1 additions, depending on whether or not you add the first
term to zero. We assume the former definition and say that computing a sum of N terms requires N additions.
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This approach requires a total of
PM

m=1 Dm multiplications and 1 +
PM

m=1(Dm � 1) additions.

The ratio ⇡ of the number of operations (i.e., multiplications and additions) required by the non-
compositional approach to the number of operations required by the compositional approach is

⇡ =

⇣
M

QM
m=1 Dm

⌘
+
⇣QM

m=1 Dm

⌘

⇣PM
m=1 Dm

⌘
+
⇣
1 +

PM
m=1(Dm�1)

⌘

=
(M+1)

QM
m=1 Dm⇣

2
PM

m=1 Dm

⌘
�M + 1

.

As the cardinalities D1, . . . , DM of the latent dimensions grow, the numerator grows at a faster
rate than the denominator. Therefore ⇡ achieves its lower bound when D1 = . . . = DM = 1:

⌦(⇡) =
(M + 1)

(2M)�M + 1
.

Because the numerator grows at a faster rate than the denominator, we can find the upper bound
by taking the limit as one or more cardinalities tend to infinity. We work with the inverse ratio

⇡

�1 =

⇣
2
PM

m=1 Dm

⌘
�M + 1

(M + 1)
QM

m=1 Dm

=
2

M + 1

 
MX

m=1

DmQM
m=1 Dm

!
� M � 1

M + 1

 
1

QM
m=1 Dm

!

=
2

M + 1

 
MX

m=1

1Q
m0 6=m Dm0

!
� M � 1

M + 1

 
1

QM
m=1 Dm

!
.

First, we take the limit of ⇡�1 as a single cardinality Dm ! 1:

lim
Dm!1

⇡

�1 = lim
Dm!1

2

M + 1

 
MX

m=1

1Q
n 6=m Dn

!
� lim

Dm!1

M � 1

M + 1

 
1

QM
m=1 Dm

!

= lim
Dm!1

2

M + 1

 
MX

m=1

1Q
n 6=m Dn

!

=
2

M + 1

 
1Q

n 6=m Dn

!
.

However, as any second cardinality Dm0 ! 1,

lim
Dm,Dm0!1

⇡

�1 = lim
Dm0!1

2

M + 1

 
1Q

n 6=m Dn

!
! 0.

Therefore, ⇡ ! 1 as any two (or more) cardinalities tend to infinity.
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3 Inference

Gibbs sampling repeatedly resamples the value of each latent variable from its conditional poste-
rior. In this section, we provide the conditional posterior for each latent variable in BPTD.

We start by defining the Chinese restaurant table (CRT) distribution (Zhou & Carin, 2015): If l ⇠
CRT(m, r) is a CRT-distributed random variable, then, we can equivalently say that

l ⇠
mX

n=1

Bern
✓

r

r + n� 1

◆
.

We also define g(x) ⌘ ln(1 + x).

Throughout this section, we use, e.g., (✓ic |�) to denote ✓ic conditioned on Y , ✏0, �0, and the
current values of the other latent variables. We assume that Y is partially observed and include a
binary mask B, where b

(t)

i
a�!j

=0 means that y(t)
i

a�!j
=0 is unobserved, not an observed zero.

Action–Topic Factors:

y

(·)
·ak$·

⌘
VX

i=1

CX

c=1

X

j 6=i

CX

d=1

TX

t=1

RX

r=1

y

(tr)

ic
ak�!dj

⇠ak ⌘
VX

i=1

X

j 6=i

TX

t=1

b

(t)

i
a�!j

CX

c=1

✓ic

CX

d=1

✓jd

RX

r=1

 tr �
(r)

c
k�!d

(�ak |�) ⇠ �
⇣
✏0 + y

(·)
·ak$·

, ✏0 + ⇠ak

⌘

Time-Step–Regime Factors:

y

(tr)

·
·�!·

⌘
VX

i=1

CX

c=1

X

j 6=i

CX

d=1

AX

a=1

KX

k=1

y

(tr)

ic
ak�!dj

⇠tr ⌘
VX

i=1

X

j 6=i

AX

a=1

b

(t)

i
a�!j

CX

c=1

✓ic

CX

d=1

✓jd

KX

k=1

�ak �
(r)

c
k�!d

( tr |�) ⇠ �
⇣
✏0 + y

(tr)

·
·�!·
, ✏0 + ⇠tr

⌘
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Country–Community Factors:

y

(·)
ic

·$·
⌘
X

j 6=i

CX

d=1

AX

a=1

KX

k=1

TX

t=1

RX

r=1

✓
y

(tr)

ic
ak�!dj

+ y

(tr)

jd
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◆
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X
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AX
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TX

t=1

 
b

(t)

i
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CX

d=1
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KX
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RX

r=1

 tr �
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CX

d=1
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RX
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d
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!
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⇣
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(·)
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·$·
,�i + ⇠ic

⌘

Auxiliary Latent Country–Community Counts:

(`ic |�) ⇠ CRT
⇣
y

(·)
ic

·$·
,↵i

⌘

Per-Country Shape Parameters:

(↵i |�) ⇠ �

 
✏0 +

CX

c=1

`ic, ✏0 +
CX

c=1

g

�
⇠ic �i

�1�
!

Per-Country Rate Parameters:

(�i |�) ⇠ �

 
✏0 + C↵i, ✏0 +

CX

c=1

✓ic

!

Diagonal Elements of the Core Tensor:

!

(r)
c �k ⌘ ⌘

�

c ⌘
$
c ⌫k⇢r

y
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c �k ⌘

VX
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TX
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TX
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⇣
�
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⌘
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⇣
!
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(r)
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⌘
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Off-Diagonal Elements of the Core Tensor:

!
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c
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⌘ ⌘

$
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$
d ⌫k⇢r c 6= d
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Core Rate Parameter:
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⌘
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RX
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0
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Between-Community Weights:
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4 Baseline Models

BPTF (Schein et al., 2015):

y

(t)

i
a�!j

⇠ Po

 
QX

q=1

✓

!
iq ✓
 
jq �aq  tq �q

!

✓

!
iq ⇠ � (✏0,�1)

✓

 
jq ⇠ � (✏0,�2)

�aq ⇠ � (✏0,�3)

 tq ⇠ � (✏0,�4)

�q ⇠ �

✓
�0

Q

, �

◆

�1, · · · ,�4, � ⇠ � (✏0, ✏0)

GPIRM (Schmidt & Mørup, 2013):

y

(t)

i
a�!j

⇠ Po
✓
�

(zt)

zi
za�!zj

◆

zi ⇠ Cat
✓

⌘1P
c ⌘c

, . . . ,

⌘CP
c ⌘c

◆

za ⇠ Cat
✓

⌫1P
k ⌫k

, . . . ,

⌫KP
k ⌫k

◆

zt ⇠ Cat
✓

⇢1P
r ⇢r

, . . . ,

⇢RP
r ⇢r

◆

⌘c ⇠ �
⇣
�0

C

, ⇣

⌘

⌫k ⇠ �
⇣
�0

K

, ⇣

⌘

⇢r ⇠ �
⇣
�0

R

, ⇣

⌘

�

(r)

c
k�!d

, ⇣ ⇠ � (✏0, ✏0)

DCGPIRM:

y

(t)

i
a�!j

⇠ Po
✓
✓i ✓j �a  t �

(zt)

zi
za�!zj

◆

✓i,�a, t ⇠ �(✏0, ✏0)

The rest of the generative process is the same as that of the GPIRM.
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5 Supplementary Plots

Figure 1: Inferred community weights ⌘

$
1 , . . . , ⌘

$
C . We use the between-community weights to

interpret shrinkage because they are used for the on- and off-diagonal elements of the core tensor.
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Figure 2: Latent structure discovered by BPTD for topic k = 1 (mostly Verbal Cooperation ac-
tion types) and the most active regime, including the community–community interaction network
(bottom left), the rate at which each country acts as a sender (top left) and a receiver (bottom right)
in each community, and the number of times each country i took an action associated with topic k
toward each country j during regime r (top right). We show only the most active 100 countries.
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Figure 3: Latent structure discovered by BPTD for topic k=2 (Verbal Cooperation).
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Figure 4: Latent structure discovered by BPTD for topic k=3 (Material Cooperation).
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Figure 5: Latent structure discovered by BPTD for topic k=4 (Verbal Conflict).
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Figure 6: Latent structure discovered by BPTD for topic k=5 (Material Conflict).
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Figure 7: Latent structure discovered by BPTD for topic k=6 (Material Conflict).

16


